Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 37(2): 167-182, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29229786

RESUMO

Alzheimer's disease (AD) is characterized by severe neuronal loss as well as the accumulation of amyloid-ß (Aß), which ultimately leads to plaque formation. Although there is now a general agreement that the aggregation of Aß can be initiated by prion-like seeding, the impact and functional consequences of induced Aß deposits (Aß seeding) on neurons still remain open questions. Here, we find that Aß seeding, representing early stages of plaque formation, leads to a dramatic decrease in proliferation and neurogenesis in two APP transgenic mouse models. We further demonstrate that neuronal cell death occurs primarily in the vicinity of induced Aß deposits culminating in electrophysiological abnormalities. Notably, environmental enrichment and voluntary exercise not only revives adult neurogenesis and reverses memory deficits but, most importantly, prevents Aß seeding by activated, phagocytic microglia cells. Our work expands the current knowledge regarding Aß seeding and the consequences thereof and attributes microglia an important role in diminishing Aß seeding by environmental enrichment.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proliferação de Células , Microglia/metabolismo , Fagocitose , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Microglia/patologia
2.
Elife ; 62017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28368242

RESUMO

Somatostatin-expressing-interneurons (SOMIs) in the dentate gyrus (DG) control formation of granule cell (GC) assemblies during memory acquisition. Hilar-perforant-path-associated interneurons (HIPP cells) have been considered to be synonymous for DG-SOMIs. Deviating from this assumption, we show two functionally contrasting DG-SOMI-types. The classical feedback-inhibitory HIPPs distribute axon fibers in the molecular layer. They are engaged by converging GC-inputs and provide dendritic inhibition to the DG circuitry. In contrast, SOMIs with axon in the hilus, termed hilar interneurons (HILs), provide perisomatic inhibition onto GABAergic cells in the DG and project to the medial septum. Repetitive activation of glutamatergic inputs onto HIPP cells induces long-lasting-depression (LTD) of synaptic transmission but long-term-potentiation (LTP) of synaptic signals in HIL cells. Thus, LTD in HIPPs may assist flow of spatial information from the entorhinal cortex to the DG, whereas LTP in HILs may facilitate the temporal coordination of GCs with activity patterns governed by the medial septum.


Assuntos
Giro Denteado/citologia , Hormônios/análise , Interneurônios/química , Interneurônios/fisiologia , Inibição Neural , Somatostatina/análise , Animais , Potenciação de Longa Duração , Camundongos , Transmissão Sináptica
3.
Cereb Cortex ; 27(3): 2348-2364, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27073230

RESUMO

The hippocampus is reciprocally connected with the entorhinal cortex. Although several studies emphasized a role for the entorhinal cortex in mesial temporal lobe epilepsy (MTLE), it remains uncertain whether its synaptic connections with the hippocampus are altered. To address this question, we traced hippocampo-entorhinal and entorhino-hippocampal projections, assessed their connectivity with the respective target cells and examined functional alterations in a mouse model for MTLE. We show that hippocampal afferents to the dorsal entorhinal cortex are lost in the epileptic hippocampus. Conversely, entorhino-dentate projections via the medial perforant path (MPP) are preserved, but appear substantially altered on the synaptic level. Confocal imaging and 3D-reconstruction revealed that new putative contacts are established between MPP fibers and dentate granule cells (DGCs). Immunohistochemical identification of pre- and postsynaptic elements indicated that these contacts are functionally mature synapses. On the ultrastructural level, pre- and postsynaptic compartments of MPP synapses were strongly enlarged. The length and complexity of postsynaptic densities were also increased pointing to long-term potentiation-related morphogenesis. Finally, whole-cell recordings of DGCs revealed an enhancement of evoked excitatory postsynaptic currents. In conclusion, the synaptic rearrangement of excitatory inputs to DGCs from the medial entorhinal cortex may contribute to the epileptogenic circuitry in MTLE.


Assuntos
Córtex Entorrinal/patologia , Epilepsia do Lobo Temporal/patologia , Plasticidade Neuronal , Sinapses/patologia , Animais , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Modelos Animais de Doenças , Córtex Entorrinal/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ácido Caínico , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Técnicas de Cultura de Tecidos
4.
J Neurosci ; 34(24): 8197-209, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920624

RESUMO

Hippocampal GABAergic cells are highly heterogeneous, but the functional significance of this diversity is not fully understood. By using paired recordings of synaptically connected interneurons in slice preparations of the rat and mouse dentate gyrus (DG), we show that morphologically identified interneurons form complex neuronal networks. Synaptic inhibitory interactions exist between cholecystokinin (CCK)-expressing hilar commissural associational path (HICAP) cells and among somatostatin (SOM)-containing hilar perforant path-associated (HIPP) interneurons. Moreover, both interneuron types inhibit parvalbumin (PV)-expressing perisomatic inhibitory basket cells (BCs), whereas BCs and HICAPs rarely target HIPP cells. HICAP and HIPP cells produce slow, weak, and unreliable inhibition onto postsynaptic interneurons. The time course of inhibitory signaling is defined by the identity of the presynaptic and postsynaptic cell. It is the slowest for HIPP-HIPP, intermediately slow for HICAP-HICAP, but fast for BC-BC synapses. GABA release at interneuron-interneuron synapses also shows cell type-specific short-term dynamics, ranging from multiple-pulse facilitation at HICAP-HICAP, biphasic modulation at HIPP-HIPP to depression at BC-BC synapses. Although dendritic inhibition at HICAP-BC and HIPP-BC synapses appears weak and slow, channelrhodopsin 2-mediated excitation of SOM terminals demonstrates that they effectively control the activity of target interneurons. They markedly reduce the discharge probability but sharpen the temporal precision of action potential generation. Thus, dendritic inhibition seems to play an important role in determining the activity pattern of GABAergic interneuron populations and thereby the flow of information through the DG circuitry.


Assuntos
Colecistocinina/metabolismo , Giro Denteado/citologia , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Somatostatina/metabolismo , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Channelrhodopsins , Colecistocinina/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/genética , Interneurônios/classificação , Lisina/análogos & derivados , Lisina/metabolismo , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos Transgênicos , Mutação/genética , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Somatostatina/genética
5.
Hippocampus ; 23(12): 1395-409, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23966340

RESUMO

Individuals with schizophrenia display a number of structural and cytoarchitectural alterations in the hippocampus, suggesting that other functions such as synaptic plasticity may also be modified. Altered hippocampal plasticity is likely to affect memory processing, and therefore any such pathology may contribute to the cognitive symptoms of schizophrenia, which includes prominent memory impairment. The current study tested whether prenatal exposure to infection, an environmental risk factor that has previously been associated with schizophrenia produced changes in hippocampal synaptic transmission or plasticity, using the maternal immune activation (MIA) animal model. We also assessed performance in hippocampus-dependent memory tasks to determine whether altered plasticity is associated with memory dysfunction. MIA did not alter basal synaptic transmission in either the dentate gyrus or CA1 of freely moving adult rats. It did, however, result in increased paired-pulse facilitation of the dentate gyrus population spike and an enhanced persistence of dentate long-term potentiation. MIA animals displayed slower learning of a reversed platform location in the water maze, and a similarly slowed learning during reversal in a spatial plus maze task. Together these findings are indicative of reduced behavioral flexibility in response to changes in task requirements. The results are consistent with the hypothesis that hippocampal plasticity is altered in schizophrenia, and that this change in plasticity mechanisms may underlie some aspects of cognitive dysfunction in this disorder.


Assuntos
Comportamento Animal/fisiologia , Hipocampo/patologia , Potenciação de Longa Duração/fisiologia , Neurônios/fisiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Esquizofrenia/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Estimulação Encefálica Profunda , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Potenciação de Longa Duração/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Polinucleotídeos/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Esquizofrenia/etiologia , Percepção Espacial/efeitos dos fármacos , Percepção Espacial/fisiologia
6.
J Physiol ; 589(17): 4365-81, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21746788

RESUMO

Fast-spiking interneurones (FSIs) constitute a prominent part of the inhibitory microcircuitry of the striatum; however, little is known about their recruitment by synaptic inputs in vivo. Here, we report that, in contrast to cholinergic interneurones (CINs), FSIs (n = 9) recorded in urethane-anaesthetized rats exhibit Down-to-Up state transitions very similar to spiny projection neurones (SPNs). Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). The membrane potential exhibited short and steep trajectories preceding spontaneous spike discharge, suggesting that fast input components controlled spike output in FSIs. Spontaneous spike data contained a high proportion (43.6 ± 32.8%) of small inter-spike intervals (ISIs) of <30 ms, setting FSIs clearly apart from SPNs and CINs. Cortical-evoked inputs had slower dynamics in SPNs than FSIs, and repetitive stimulation entrained SPN spike output only if the stimulation was delivered at an intermediate frequency (20 Hz), but not at a high frequency (100 Hz). Pharmacological induction of an activated ECoG state, known to promote rapid FSI spiking, mildly increased the power (by 43 ± 55%, n = 13) at gamma frequencies in the membrane potential of SPNs, but resulted in few small ISIs (<30 ms; 4.3 ± 6.4%, n = 8). The gamma frequency content did not change in CINs (n = 8). These results indicate that FSIs are uniquely responsive to high-frequency input sequences. By controlling the spike output of SPNs, FSIs could serve gating of top-down signals and long-range synchronisation of gamma-oscillations during behaviour.


Assuntos
Interneurônios , Potenciais da Membrana , Potenciais de Ação , Animais , Corpo Estriado , Neostriado , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...